An integrability theorem for almost Kähler manifolds
نویسنده
چکیده
In this paper we prove a new geometric integrability theorem for almost complex manifolds. Let M be a connected, oriented, smooth 2m real dimensional manifold with an U(m) structure on its tangent bundle. Moreover let ∇ be a compatible connection on it. Assume the complexified curvature of the connection has vanishing (0, 2) component. Then we claim that M can be given the structure of an m complex dimensional Kähler manifold and ∇ is the unique Levi–Civita connection on it. The proof has a Yang–Mills theoretic flavour and is based on Uhlenbeck’s theorem on the existence of local Coulomb gauges.
منابع مشابه
The Curvature and the Integrability of Almost-kähler Manifolds: a Survey
Situated at the intersection of Riemannian, symplectic and complex geometry, Kähler geometry is a subject that has been intensively studied in the past halfcentury. The overlap of just Riemannian and symplectic geometry is thewider area of almost-Kähler geometry. Although problems specific to almost-Kähler geometry have been considered in the past (see e.g. [42, 44, 77]), it is fair to say that...
متن کاملAn intrinsic volume functional on almost complex 6-manifolds and nearly Kähler geometry
Let (M, I) be an almost complex 6-manifold. The obstruction to integrability of almost complex structure (socalled Nijenhuis tensor) N : Λ0,1(M)−→ Λ(M) maps a 3-dimensional bundle to a 3-dimensional one. We say that Nijenhuis tensor is non-degenerate if it is an isomorphism. An almost complex manifold (M, I) is called nearly Kähler if it admits a Hermitian form ω such that ∇(ω) is totally antis...
متن کاملAn integrability theorem for almost complex manifolds I
In this paper we prove a new geometric integrability theorem for almost complex manifolds. Let M be a connected, smooth 2m real dimensional manifold with an U(m) structure on its tangent bundle and ∇ be a compatible connection on it. Assume the complexified curvature of the connection has vanishing (0, 2) component. Then we claim that M can be given the structure of an m complex dimensional Käh...
متن کاملA Theorem of Tits Type for Compact Kähler Manifolds
We prove a theorem of Tits type for compact Kähler manifolds, which has been conjectured in the paper [9].
متن کاملIntegrability of Rough Almost Complex Structures
We extend the Newlander-Nirenberg theorem to manifolds with almost complex structures that have somewhat less than Lipschitz regularity. We also discuss the regularity of local holomorphic coordinates in the integrable case, with particular attention to Lipschitz almost complex structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008